Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into Its Regulation by Drought
نویسندگان
چکیده
Plant guard cells gate CO2 uptake and transpirational water loss through stomatal pores. As a result of decades of experimental investigation, there is an abundance of information on the involvement of specific proteins and secondary messengers in the regulation of stomatal movements and on the pairwise relationships between guard cell components. We constructed a multi-level dynamic model of guard cell signal transduction during light-induced stomatal opening and of the effect of the plant hormone abscisic acid (ABA) on this process. The model integrates into a coherent network the direct and indirect biological evidence regarding the regulation of seventy components implicated in stomatal opening. Analysis of this signal transduction network identified robust cross-talk between blue light and ABA, in which [Ca2+]c plays a key role, and indicated an absence of cross-talk between red light and ABA. The dynamic model captured more than 10(31) distinct states for the system and yielded outcomes that were in qualitative agreement with a wide variety of previous experimental results. We obtained novel model predictions by simulating single component knockout phenotypes. We found that under white light or blue light, over 60%, and under red light, over 90% of all simulated knockouts had similar opening responses as wild type, showing that the system is robust against single node loss. The model revealed an open question concerning the effect of ABA on red light-induced stomatal opening. We experimentally showed that ABA is able to inhibit red light-induced stomatal opening, and our model offers possible hypotheses for the underlying mechanism, which point to potential future experiments. Our modelling methodology combines simplicity and flexibility with dynamic richness, making it well suited for a wide class of biological regulatory systems.
منابع مشابه
Correction: Multi-level Modeling of Light-Induced Stomatal Opening Offers New Insights into Its Regulation by Drought
[This corrects the article DOI: 10.1371/journal.pcbi.1003930.].
متن کاملThe nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis.
The movement of guard cells in stomatal complexes controls water loss and CO(2) uptake in plants. Examination of the dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) revealed that it is expressed and functions in Arabidopsis guard cells. CHL1 promoter-beta-glucuronidase and CHL1 promoter-green fluorescent protein constructs showed strong expression in guard cells, and immunolocalization e...
متن کاملOverexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana
The Mg-chelatase H subunit (CHLH) has been shown to mediate chlorophyll biosynthesis, as well as plastid-to-nucleus and abscisic acid (ABA)-mediated signaling. A recent study using a novel CHLH mutant, rtl1, indicated that CHLH specifically affects ABA-induced stomatal closure, but also that CHLH did not serve as an ABA receptor in Arabidopsis thaliana. However, the molecular mechanism by which...
متن کاملNew Approaches to the Biology of Stomatal Guard Cells
CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a conveni...
متن کاملA Dominant Negative OsKAT2 Mutant Delays Light-Induced Stomatal Opening and Improves Drought Tolerance without Yield Penalty in Rice
Stomata are the main gateways for water and air transport between leaves and the environment. Inward-rectifying potassium channels regulate photo-induced stomatal opening. Rice contains three inward rectifying shaker-like potassium channel proteins, OsKAT1, OsKAT2, and OsKAT3. Among these, only OsKAT2 is specifically expressed in guard cells. Here, we investigated the functions of OsKAT2 in sto...
متن کامل